Основные причины возникновения дефектов в бетонных конструкциях. Заливка бетона в опалубку Причины прилипания бетона к опалубке


Величина сцепления бетона с опалубкой достигает нескольких кгс/см 2 . Это затрудняет работы по распалубке, ухудшает качество бетонных поверхностей и приводит к преждевременному износу опалубочных щитов.

На сцепление бетона с опалубкой оказывают влияние адгезия и когезия бетона, его усадка, шероховатость и пористость формующей поверхности опалубки.

Под адгезией (прилипанием) понимают обусловленную молекулярными силами связь между поверхностями двух разнородных или жидких соприкасающихся тел. В период контакта бетона с опалубкой создаются благоприятные условия для проявления адгезии. Клеящее вещество (адгезив), которым в данном случае является бетон, в период укладки находится в пластичном состоянии. Кроме этого, в процессе виброуплотнения бетона пластичность его еще более увеличивается, вследствие чего бетон сближается с поверхностью опалубки и сплошность контакта между ними увеличивается.

Бетон прилипает к деревянным и стальным поверхностям опалубки сильнее, чем к пластмассовым, из-за слабой смачиваемости последних.

При снятии опалубки может быть три варианта отрыва. При первом варианте адгезия очень мала, а когезия достаточно велика.В этом случае опалубка отрывается точно по плоскости контакта. Второй вариант - адгезия больше, чем когезия. При этом опалубка отрывается по клеящему материалу (бетону). Третий вариант - адгезия и когезия по своим величинам примерно одинаковы. Опалубка отрывается частично по плоскости контакта бетона с опалубкой, частично по самому бетону (смешанный или комбинированный отрыв). При адгезионном отрыве опалубка снимается легко, поверхность ее остается чистой, а поверхность бетона имеет хорошее качество.

Вследствие этого необходимо стремиться к обеспечению адгезионного отрыва. Для этого формующие поверхности опалубки выполняют из гладких плохо смачиваемых материалов или наносят на них смазки и специальные антиадгезионные покрытия.

Смазки для опалубки в зависимости от их состава, принципа действия и эксплуатационных свойств можно разделить на четыре группы: водные суспензии; гидрофобизирующие смазки; смазки - замедлители схватывания бетона; комбинированные смазки.

Применение эффективных смазок снижает вредное воздействие на опалубку некоторых факторов. В ряде же случаев использовать смазки нельзя. Так, при бетонировании в скользящей или подъемно-переставной опалубке применять такие смазки запрещено из-за их попадания в бетон и снижения его качества. Хороший эффект дают антиадгезионные защитные покрытия на Основе полимеров. Их наносят на формующие поверхности щитов при их изготовлении, и они выдерживают 20-35 циклов без повторного нанесения и ремонта. Для дощатой и фанерной опалубки разработано покрытие на основе фенолформальдегида. Его напрессовывают на поверхность щитов при давлении до 3 кгс/см 2 и температуре + 80° С.

Целесообразно применять щиты, палубы которых выполнены из гетинакса, гладкого стеклопластика или текстолита, а каркас - из металлических уголков. Такая опалубка износоустойчива, легко снимается и обеспечивает хорошее качество бетонных поверхностей.

При работе с монолитными железобетонными конструкциями приходится сталкиваться со сцеплением с опалубкой, величина которого может достигать нескольких кгс/см 2 . Сцепление не только затрудняет распалубку железобетонной конструкции, но и приводит к ухудшению качества бетонной поверхности, а также к преждевременному износу щитов опалубки.

Сцепление бетона с опалубкой обусловлено влиянием следующих факторов:

  • адгезия и когезия бетона;
  • усадка бетона;
  • шероховатость и пористость поверхности опалубки, прилегающей к железобетонной конструкции.

В период укладки бетон находится в пластичном состояниии является клеящим веществом (адгезивом), благодаря чему появляется адгезия (прилипание бетона к опалубке). В процессе уплотнения пластичность бетона увеличивается, он сближается с поверхностью опалубки и сплошность контакта между бетоном и щитами опалубки увеличивается.

На адгезию оказывает влияние и материал, из которого сделана формующая опалубочная поверхность: к деревянным и стальным поверхностям бетон прилипает сильнее, чем к пластмассовым, так как последние имеют меньшую смачиваемость.

Без специальной обработки фанера, дерево, сталь, стеклопластики хорошо смачиваются, что создает достаточно большое их сцепление бетоном. А гетинакс и текстолит слабо смачиваемые (гидрофобные), поэтому с ними бетон сцепляется незначительно.

При обработке формующей поверхности и нанесении на неё пленки масла смачиваемость значительно снижается (гидрофобизуется), что значительно уменьшает адгезию.

Усадка снижает адгезию и сцепление: чем больше усадка в пристыковых слоях бетона, тем вероятнее появление усадочных трещин в зоне контакта, что ослабляет сцепление.

Когезия в контактной паре «опалубка и бетон» есть прочность на растяжение пристыковых слоев бетона.

Существует три возможных варианта отрыва съемной опалубки при распалубке монолитной бетонной конструкции:

  1. вариант 1: адгезия мала, а когезия велика. В таком случае отрывается точно по плоскости контакта;
  2. вариант 2: адгезия больше, чем когезия. Опалубка будет отрываться по клеящему материалу (бетону);
  3. вариант 3: адгезия примерно равна когезии. В этом случае наблюдается (комбинированный) отрыв, при котором опалубка отрывается частично по плоскости контакта бетона с опалубкой, частично по самому бетону.

В первом (адгезионном) варианте отрыва опалубка снимается легко, ее поверхность остается чистой, а поверхность бетона обладает хорошим качеством. Поэтому важно обеспечить адгезионный отрыв. Это достигаются следующими методами:

  • формующие поверхности опалубки делают из гладких плохо смачиваемых материалов
  • наносят на формующие поверхности смазки для опалубки эмульсии и специальные антиадгезионные покрытия.

Требования к смазкам для опалубки:

  • не должны оставлять на бетоне маслянистых пятен. Исключения здесь составляет конструкций, засыпаемых впоследствии землей/покрываемых или гидроизоляцией;
  • не уменьшают прочность контактного слоя бетона;
  • пожарная безопасность;
  • отсутствие летучих веществ, вредных для здоровья;
  • должны держаться на наклонных и вертикальных поверхностях при температуре 30 о С не менее 24 часов.

Виды смазок

Бетонная поверхность при использовании разных смазок для опалубки

В зависимости от состава, принципа действия и эксплуатационных свойств смазки для опалубки можно разделить на четыре группы:

  1. водные суспензии;
  2. гидрофобизирующие смазки;
  3. смазки - замедлители схватывания бетона;
  4. комбинированные смазки.

Водные суспензии

получают из порошкообразных инертных к бетону веществ. Это простые и дешевые, но не всегда эффективные средства, устраняющие прилипание бетона к опалубке. Их принцип действия основан на том, что из суспензии испаряется, а на формующей поверхности опалубки образуется тонкая защитная пленка, которая препятствует прилипанию бетона к палубе.

Наиболее часто используемый вариант водной суспензии — известково-гипсовая суспензия. Для её приготовления смешивают полуводный гипс (0,6-0,9 вес. ч.), известковое тесто (0,4-0,6 вес. ч.), сульфитно-спиртовую барду (0,8-1,2 вес. ч.) и воду (4-6 вес. ч.).

При виброуплотнении суспензионные смазки стираются бетоном и загрязняют бетонную поверхность. Поэтому в монолитном строительстве их применяют достаточно редко.

Гидрофобизирующие смазки

изготавливают на основе минсоальных масел, эмульсола ЭКС или солей жирных кислот (другими словами, на основе мыл). При обработке палубы гидрофобизирующая смазка создает на ее формующей поверхности тонкую водоотталкивающую (гидрофобную) пленку из слоя ориентированных молекул. Гидрофобизирующие смазки распространены в монолитном строительстве, но они обладают рядом недостатков: высокая стоимость, загрязнение бетонной поверхности, пожарная опасность.

Замедлители схватывания бетона

Третья группа смазок. Для замедления схватывания бетона в состав таких смазок вводят танин, мелассу и пр. Их недостаток - сложно регулировать толщину слоя бетона, в котором замедляется схватывание.

Комбинированные смазки – обратные эмульсии

Наиболее эффективные средства для улучшения качества получаемой бетонной поверхности монолитной конструкции и увеличения срока использования (оборачиваемости) съемной строительной опалубки. Такие смазки готовят в виде обратных эмульсий. Помимо гидрофобизаторов и замедлителей схватывания в некоторые из них вводят и пластифицирующие , например, мылонафт, сульфитно-дрожжевую барду (СДБ) и др. Пластификаторы при вибрационном уплотнении пластифицируют бетон в пристыковых слоях, чем существенно снижают его поверхностную пористость.

Эмульсионные смазки стабильны. Они не расслаиваются в течение 7-10 суток. При их использовании полностью устраняется прилипание бетона к опалубке. Также они хорошо удерживаются на поверхности палубы и не загрязняют бетон.

Состав смазок для опалубки

Для смазывания опалубки обычно используют эмульсии (типа вода-мыло-керосин; вода-масло) и суспензии (типа глина-масло; вода-мел; цемент-масло-вода). Составы приготовляют в ремонтных мастерских или получают в готовом виде с заводов ЖБИ, домостроительных комбинатов и т.д.

Для щитовой опалубки, используемой при возведении подземных железобетонных конструкций, универсальными является битумно-керосиновые смазки. Их получают путем растворения низкомарочных битумов в керосине. Эти смазки подходят как для металлических, так и для дощатых и пластмассовых палуб. Также для дощатых палуб рекомендуют использовать петролатумно-соляровые, петролатумно-керосиновые, парафино-соляровые смазки.

Компоненты

Состав, вес. ч.

Оборудование для приготовления

Мыло хозяйственное

Горизонтальные поверхности деревянной, комбинированной и
стальной опалубки (в т.ч. термоактивной ).
Вертикальные поверхности деревянной и деревометаллической опалубки.

Вибрационный диспергатор

Мыло хозяйственное

Мыло хозяйственное

Соляровое масло

Стальная опалубка

Деревянная, комбинированная и стальная опалубка (в т.ч. термоактивная )

Сатуратор

Деревянная и стальная опалубка

Смеситель с подогревателем

Нефтяной БМ-I , БМ-II

Опалубочные формы для заливки конструкций подземной части
здания

Мыло хозяйственное

Вибрационный диспергатор

Кальцинированная сода

Эмульсия ЭКС

Горизонтальные поверхности стальных опалубочных форм

Сатуратор

Порядок нанесения смазки на опалубку:

Расход смазки для опалубки

Расход зависит от способа нанесения на поверхность палубы, температуры наружного воздуха, консистенции смазки, промежутки времени между установкой опалубки и укладкой бетона.

Ориентировочный расход:

Материал, из которого изготовлена палуба щитов

Нанесение на горизонтально-наклонную поверхность

Нанесение на вертикальную поверхность

пистолетом

пистолетом

Летнее время

Пластмасса, сталь

Работая с конструкциями монолитного типа, изготовленными из железобетона, стоит уделять внимание особенностям сцепления бетона с опалубкой, где величина достигает нескольких кг на квадратный сантиметр. Из-за сцепления распалубка ж\б конструкции будет более сложной, к тому же, данный процесс может ухудшить саму бетонную поверхность, а именно, ее качество. А щиты опалубки и вовсе могут разрушиться раньше заданного срока. Чтобы этого не произошло, сейчас доступна ubts.kiev.ua , которая решает все эти проблемы.

Из-за нижеописанных факторов бетон и сцепляется с опалубкой:
бетон подвергается адгезии и когезии;
происходит усадка бетона;
опалубка, прилегающая к конструкции из железобетона, может иметь шероховатую или пористую поверхность.

В тот момент, когда бетон укладывается, ее состояние пластично, поэтому его считают клеящим веществом, благодаря которому происходит процесс, именуемый как адгезия (когда бетон прилипает к опалубке). Когда материал уплотняется, показатель пластичности бетона может увеличиваться, в следствии чего он прилегает к поверхности опалубки.

Процесс адгезии может быть различным, что зависит от материала, который использовался для производства формирующей опалубочной поверхности: более сильно бетон будет прилипать к дереву и стали. Пластмассовые изделия из-за своей меньше смачиваемости, менее всего адгезируют с бетоном.

Если фанеру, стальные, деревянные или стеклопластиковые материалы предварительно не обрабатывать, то они будут легкосмачиваемыми, что обеспечит качественную сцепляемость с бетоном. Менее значительный коэффициент сцепления с гетинаксом и текстолитом, так как они относятся к категории гидрофобных материалов.

Снизить смачиваемость можно путем обработки поверхности, что представляет собой нанесение на нее масловой пленки, в следствии чего процесс адгезии значительно уменьшится. Из-за усадки может снизиться не только сцепление, но адгезия: из-за большой усадки велика вероятность что появятся усадочные трещины в зоне контакта, что влияет на ослабление сцепления.

Если требуется распалубка конструкции из бетона монолитного вида, то сейчас доступны три способа, благодаря которым и производится отрыв съемной опалубки:
большой показатель когезии и малый адгезии. В этой ситуации требуется отрыв опалубки по плоскости контакта;
уровень адгезии превышает когезию. Отрыв опалубки будет производится по материалу, который является клеящим (бетон);
приблизительная равность между адгезией и когезией. Такая ситуация предполагает отрыв смешанного (комбинированного) типа.

Первый вариант наиболее оптимален, так как он позволяет легко снять опалубку, сохраняя чистой ее поверхность, а также сохранить качество самого бетона. В связи с этим, адгезионный отрыв должен обеспечиваться чаще остальных. Доступен он в таких ситуациях:
когда формующая опалубочная поверхность изготовлена из гладкого материала, плохо смачиваемого;
формующая поверхность была обработана специальной смазкой или специальными антиадгезионными покрытиями.

Опалубочная смазка должна отвечать следующим требованиям:
после ее использования на поверхности бетона не должны оставляться масляные разводы;
контактный слой бетона не должен становится менее прочным;
высокий уровень пожарной безопасности;
в составе не должны числиться летучие вещества, являющиеся опасными для человеческого здоровья;
способность держаться на поверхности (вертикальные и горизонтальные) в течении суток при температуре воздуха +30 градусов по Цельсию.

22 апреля в ГУП "НИИМосстрой" прошла научно-практическая конференция "Проблемы монолитного строительства и пути их решения". В конференции приняли участие представители ОАО "НИИЖБ" им. А.А. Гвоздева, ООО "ГЕОСтром", ОАО "Московский ИМЭТ", ГБУ "ЦЭИИС", ГУП "НИИМосстрой", ОАО "МонАрх", ООО "ГероКрит", ООО BASF "Строительные системы" и др.

Информативная насыщенность конференции была очень велика, однако не хватало времени на обсуждение представленных докладов. Видно, что вопросов в этой области накопилось достаточно много, и представители строительных организаций, в том числе, готовы к их обсуждению.

Надеемся, что материалы этой конференции, изданные отдельной книжкой ГУП "НИИМосстрой", послужат совершенствованию работ в области монолитного строительства.

Предлагаем Вашему вниманию текст доклада, представленного на конференции начальником Лаборатории испытаний строительных материалов и конструкций Дмитрием Николаевичем Абрамовым.

Основные причины возникновения дефектов в бетонных конструкциях

В своем докладе мне бы хотелось рассказать об основных нарушениях технологии производства железобетонных работ, с которыми сталкиваются сотрудники нашей лаборатории на строительных площадках города Москвы.

- ранняя распалубка конструкций.

Из-за высокой стоимости опалубки с целью увеличения количества циклов ее оборачиваемости, строители зачастую не соблюдают режимы выдерживания бетона в опалубке и производят распалубку конструкций на более ранней стадии, чем это предусматривает требования проекта технологическими картами и СНиП 3-03-01-87. При демонтаже опалубки важное значение имеет величина сцепления бетона с опалубкой при: большом сцеплении затрудняется работы по распалубке. Ухудшение качества бетонных поверхностей, приводит к возникновению дефектов.

- изготовление недостаточно жесткой, деформирующейся при укладке бетона и недостаточно плотной опалубки.

Такая опалубка получает деформации в период укладки бетонной смеси, что приводит к изменению формы железобетонных элементов. Деформация опалубки может привести к смещению и деформации арматурных каркасов и стенок, изменению несущей способности элементов конструкции, образованию выступов и наплывов. Нарушение проектных размеров конструкций приводит:

В случае их уменьшения

К снижению несущей способности

В случае увеличения к возрастанию их собственного веса.

Этот вид нарушения технологии наблюдения при изготовлении опалубки в построечных условиях без должного инженерного контроля.

- недостаточная толщина или отсутствие защитного слоя.

Наблюдается при неправильной установке или смещении опалубки или армокаркаса, отсутствии прокладок.

К серьезным дефектам монолитных железобетонных конструкций может привести слабый контроль за качеством армирования конструкций. Наиболее распространенными являются нарушения:

- несоответствие проекту армирования конструкций;

- некачественная сварка конструктивных узлов и стыков арматуры;

- применение сильно прокоррозированной арматуры.

- плохое уплотнение бетонной смеси при укладке в опалубку приводит к образованию раковин и каверн, может вызвать значительное снижение несущей способности элементов, увеличивает проницаемость конструкций, способствует коррозии арматуры находящейся в зоне дефектов;

-укладка расслоившейся бетонной смеси не позволяет получить однородную прочность и плотность бетона по всему объему конструкции;

- применение слишком жесткой бетонной смеси приводит к образованию раковин и каверн вокруг арматурных стержней, что снижает сцепление арматуры с бетоном и вызывает опасность появления коррозии арматуры.

Встречаются случаи налипания бетонной смеси на арматуру и опалубку, что вызывает образование полостей в теле бетонных конструкций.

- плохой уход за бетоном в процессе его твердения.

Во время ухода за бетоном следует создать такие температурно-влажные условия, которые обеспечили бы сохранение в бетоне воды, необходимой для гидратации цемента. Если процесс твердения протекает при относительно постоянной температуре и влажности, напряжения, возникающие в бетоне вследствие изменения объема и обуславливаемые усадкой и температурными деформациями, будут незначительными. Обычно бетон покрывают полиэтиленовой пленкой или другим защитным покрытием. С целью не допустить его пересыхания. Пересушенный бетон обладает значительно меньшей прочностью и морозостойкостью, чем нормально затвердевший, в нем возникает много усадочных трещин.

При бетонировании в зимних условиях при недостаточном утеплении или тепловой обработке может произойти раннее замораживание бетона. После оттаивания такого бетона он не сможет набрать необходимую прочность.

Повреждения железобетонных конструкций разделяют по характеру влияния на несущую способность на три группы.

I группа - повреждения, практически не снижающие прочность и долговечность конструкции (поверхностные раковины, пустоты; трещины, в том числе усадочные, раскрытием не свыше 0,2мм, а также, у которых под воздействием временной нагрузки и температуры раскрытие увеличивается не более чем на 0,1мм; сколы бетона без оголения арматуры и т.п.);

II группа - повреждения, снижающие долговечность конструкции (коррозионноопасные трещины раскрытием более 0,2мм и трещины раскрытием более 0,1мм, в зоне рабочей арматуры предварительно напряженных пролетных строений, том числе и вдоль участков под постоянной нагрузкой; трещины раскрытием более 0,3мм под временной нагрузкой; пустоты раковины и сколы с оголением арматуры; поверхностная и глубинная коррозия бетона и т.п.);

III группа - повреждения, снижающие несущую способность конструкции (трещины, не предусмотренные расчетом ни по прочности, ни по выносливости; наклонные трещины в стенках балок; горизонтальные трещины в сопряжениях плиты и пролетных строений; большие раковины и пустоты в бетоне сжатой зоны и т.п.).

Повреждения I группы не требуют принятия срочных мер, их можно устранить нанесением покрытий при текущем содержании в профилактических целях. Основное назначение покрытий при повреждениях I группы – остановить развитие имеющихся мелких трещин, предотвратить образование новых, улучшить защитные свойства бетона и предохранить конструкции от атмосферной и химической коррозии.

При повреждениях II группы ремонт обеспечивает повышение долговечности сооружения. Поэтому и применяемые материалы должны иметь достаточную долговечность. Обязательной заделке подлежат трещины в зоне расположения пучков преднапряженной арматуры, трещины вдоль арматуры.

При повреждениях III группы восстанавливают несущую способность конструкции по конкретному признаку. Применяемые материалы и технологии должны обеспечивать прочностные характеристики и долговечность конструкции.

Для ликвидации повреждений III группы, как правило, должны разрабатываться индивидуальные проекты.

Постоянный рост объемов монолитного строительства является одной из основных тенденций, характеризующих современный период российского строительства. Однако в настоящее время массовый переход к строительству из монолитного железобетона может иметь негативные последствия, связанные с достаточно низким уровнем качества отдельных объектов. Среди основных причин низкого качества возводимых монолитных зданий необходимо выделить следующее.

Во-первых, большинство действующих в настоящее время в России нормативных документов создавались в эпоху приоритетного развития строительства из сборного железобетона, поэтому совершенно естественны их направленность на заводские технологии и недостаточная проработка вопросов строительства из монолитного железобетона.

Во-вторых, у большинства строительных организаций отсутствуют достаточный опыт и необходимая технологическая культура монолитного строительства, а так же некачественное техническое оснащение.

В-третьих, не создана эффективная система управления качеством монолитного строительства, включающая систему надежного технологического контроля качества работ.

Качество бетона – это, прежде всего, соответствие его характеристик параметрам в нормативных документах. Росстандартом утверждены и действуют новые стандарты: ГОСТ 7473 «Смеси бетонные. Технические условия», ГОСТ 18195 «Бетоны. Правила контроля и оценки прочности». Должен вступить в силу ГОСТ 31914 «Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций», должен стать действующим стандарт для арматурных и закладных изделий.

Новые стандарты, к сожалению, не содержат вопросов, связанных со спецификой юридических отношений между заказчиками строительства и генподрядчиками, производителями стройматериалов и строителями, хотя качество бетонных работ зависти от каждого этапа технической цепочки: подготовка сырья для производства, проектирование бетонов, производство и транспортирование смеси, укладка и уход за бетоном в конструкции.

Обеспечение качества бетона в процессе производства достигается благодаря комплексу различных условий: здесь и современное технологическое оборудование, и наличие аккредитованных испытательных лабораторий, и квалифицированный персонал, и безусловное выполнение нормативных требований, и внедрение процессов управления качеством.

Начальник Лаборатории испытаний строительных материалов и

конструкций ГБУ "ЦЭИИС" - Д.Н. Абрамов

Кандидаты техн. наук Я. П. БОНДАРЬ (ЦНИИЭП жилища) Ю. С. ОСТРИНСКИЙ (НИИЭС)

Для изыскания способов бетонирования в скользящей опалубке стен толщиной менее 12-15 ом исследовали силы взаимодействия опалубки и бетонных смесей, приготовленных на плотных заполнителях, керамзите и шлаковой пемзе. При существующей технологии бетонирования в скользящей опалубке это минимально допустимая толщина стен. Для лепких бетонов использовали керамзитовый гравий Бескудниковского завода с дробленым песком из этого же керамзита и шлаковую пемзу, изготовленную из расплавов Ново-Липецкого металлургического завода с леском, полученным дроблением шлаковой лемзы.

Керамзитобетон марки 100 имел виброуплотняемость, измеренную на приборе Н. Я. Спивака, 12-15 с; структурный фактор 0,45; объемную массу 1170 кг/м3. Шлакопемзобетои марки 200 имел виброуплотняемосгь 15-20 с, структурный фактор 0,5, объемную массу 2170 кг/м3. Тяжелый бетон марки 200 при объемной массе 2400 кг/м3 характеризовался осадкой стандартного конуса 7 см.

Силы взаимодействия скользящей опалубки с бетонными смесями измеряли на испытательной установке, представляющей собой модификацию прибора Каза-ранде для измерения усилий одноплоскостного сдвига. Установка выполнена в виде горизонтального лотка, заполняемого бетонной смесью. Поперек лотка укладывали испытательные рейки из деревянных брусков, обшитых по поверхности соприкосновения с бетонной смесью полосами кровельной стали. Таким образом, испытательные рейки имитировали стальную скользящую опалубку. Рейки выдерживали на бетонной смеси под пригрузами различной величины, имитирующими давление бетона на опалубку, после чего фиксировали усилия, вызывающие горизонтальное перемещение реек по бетону. Общий вид установки дан на рис. 1.


По результатам проведенных испытаний получена зависимость сил взаимодействия стальной скользящей опалубки и бетонной смеси т от величины давления бетона на опалубку а (рис. 2), которая носит линейный характер. Угол наклона линии графика по отношению к оси абсцисс характеризует угол трения опалубки по бетону, что позволяет рассчитать силы трения. Величина, отсекаемая линией графика на оси ординат, характеризует силы сцепления бетонной смеси и опалубки т, не зависящие от давления. Угол трения опалубки по бетону не изменяется при возрастании продолжительности неподвижного соприкосновения с 15 до 60 мин, величина сил сцепления увеличивается при этом в 1,5-2 раза. Основное приращение усилий сцепления происходит в течение первых 30-40 мин при быстром снижении приращения за последующие 50-60 мин.

Сила сцепления тяжелого бетона и стальной опалубки через 15 мин после уплотнения смеси не превышает 2,5 г/ом2, или 25 кг/м2 поверхности соприкосновения. Это составляет 15-20% общепринятой величины суммарной силы взаимодействия тяжелого бетона и стальной опалубки (120-150 кг/м2). Основная часть усилий приходится на долю сил трения.

Замедленный рост сил сцепления в течение первых 1,5 ч после уплотнения бетона объясняется незначительным числом новообразований в процессе схватывания бетонной смеси. Согласно исследованиям , в период от начала до окончания схватывания бетонной смеси происходит перераспределение в ней воды затворения между вяжущим и заполнителями. Новообразования развиваются в основном после окончания схватывания. Быстрый рост сцепления скользящей опалубки с бетонной смесью начинается через 2-2,5 ч после уплотнения бетонной смеси .

Удельный вес сил сцепления в общей величине усилий взаимодействия тяжелого бетона и стальной скользящей опалубки составляет около 35%. Основная доля усилий приходится на силы трения, определяемые давлением смеси, которое в условиях бетонирования изменяется во времени. Для проверки этого предположения измеряли усадку или набухание свежеотформошанных бетонных образцов непосредственно после уплотнения вибрацией. Во время формования бетонных кубов с размером ребра 150 мм на одну из вертикальных его граней помещали текстолитовую пластинку, гладкая поверхность которой находилась в одной плоскости с вертикальной гранью. После уплотнения бетона и снятия образца с вибростола вертикальные грани куба освобождали от боковых стенок формы и в течение 60-70 Мин с помощью мессу- ра измеряли расстояния между противоположными вертикальными гранями. Результаты измерений показали, что свежеотформованный бетон -сразу же после уплотнения дает усадку, величина которой тем выше, чем больше подвижность омеси. Суммарная величина двусторонней осадки достигает 0,6 мм, т. е. 0,4% толщины образца. В начальный период после формования набухания свежеуложенного бетона не происходит. Это объясняется контракцией в начальной стадии схватызания бетона в процессе перераспределения воды, сопровождающегося образованием гидратных пленок, создающих большие усилия поверхностного натяжения.

Принцип действия этого прибора аналогичен принципу действия конического пластометра. Однако клиновидная форма индентора позволяет использовать расчетную схему вязкосыпучего массива. Результаты опытов с клиновидным индентором показали, что То изменяется от 37 до 120 г/см2 в зависимости от вида бетона.

Аналитические расчеты давления слоя бетонной смеси толщиной 25 ом в скользящей опалубке показали, что смеси принятых составов после их уплотнения вибрацией не оказывают активного давления на обшивку опалубки. Давление же в системе «скользящая опалубка - бетонная смесь» обусловлено упругими деформациями щитов под воздействием гидростатического напора смеси в процессе ее уплотнения вибрацией.

Взаимодействие щитов скользящей опалубки и уплотненного бетона в стадии их совместной работы достаточна хорошо моделируется пассивным отпором вязкопластического тела под воздействием нажима со стороны вертикальной подпорной стенки. Расчеты показали, что при одностороннем действии опалубочного щита на бетонную масс} для смещения части массива но главным плоскостям скольжения требуется усиление нажима, значительно превышающее давление, которое возникает при само неблагоприятном сочетании условий укладки и уплотнения смеси. При двустороннем нажиме опалубочных щитов на вертикальный -слой бетона ограниченной толщины усилия нажима, необходимые для смещения уплотненного бетона пс главным плоскостям скольжения, приобретают обратный знак и значительно превышают давление, необходимое для изменения компрессионных характеристик смеси. Обратное разрыхление уплотненной смеси под действием двустороннего сжатия требует такого высокого давления, которое недостижимо при бетонировании в скользящей опалубке.


Таким образом, бетонная смесь, укладываемая по правилам бетонирования в скользящей опалубке слоями толщиной 25-30 см, не оказывает давления на щиты опалубки и способна воспринимать с их стороны упругий нажим, возникающий в процессе уплотнения вибрацией.

Для определения усилий взаимодействия, возникающих в процессе бетонирования, измерения проводили на модели скользящей опалубки в натуральную величину. В полости формования устанавливали датчик с мембраной из высокопрочной фосфористой бронзы. Давления и усилия на подъемных тягах в статическом положении установки измеряли автоматическим измерителем давлений (АИД- 6М) в процессе вибрации и подъема опалубки-фотоосциллографом Н-700 с усилителем 8-АНЧ. Фактические характеристики взаимодействия стальной скользящей опалубки с различнььми видами бетона приведены в таблице.

В период между окончанием вибрации и первым подъемом опалубки происходило самопроизвольное снижение давления. которое удерживалось без изменения до тех пор, пока опалубка не начинала двигаться вверх. Это обусловлено интенсивной усадкой свежеотформованной смеси.


Для уменьшения усилий взаимодействия скользящей опалубки с бетонной смесью необходимо уменьшать или полностью устранять давление между щитами опалубки и уплотненным бетоном. Эту задачу решает предложенная технология бетонирования с использованием промежуточных извлекаемых щитков («лейнеров») из тонкого (до 2 мм) листового материала. Высота лейнеров больше высоты полости формования (30-35 ом). Лейнеры устанавливают в полость формования вплотную к щитам скользящей опалубки (рис. 5) и сразу же после укладки и уплотнения.бетона поочередно извлекают из нее.

Зазор (2 мм), остающийся между бетоном и опалубкой, после удаления щитков предохраняет щит опалубки, выпрямляющийся после упругого прогиба (как правило, не превышающего 1 -1,5 мм) от соприкосновения с вертикальной поверхностью бетона. Поэтому вертикальные грани стен, освободившиеся от лейнеров, сохраняют приданную им форму. Это позволяет бетонировать в скользящей опалубке тонкие стены.

Принципиальная возможность формования тонких стен с помощью лейнеров была проверена при возведении натурных фрагментов стен толщиной 7 см, выполненных из керамзитобетона, шлакопемзобетона и тяжелого бетона. Результаты пробных формовок показали, что легкобетонные смеси лучше соответствуют особенностям предложенной технологии, чем смеси на плотных заполнителях. Это обусловлено высокими сорбционными свойствами пористых заполнителей, а также слитным строением легких бетонов и наличием гидравлически активной дисперсной составляющей в легком песке.


Тяжелый бетон (хотя и в меньшей степени), также проявляет способность сохранять вертикальность свежеотформованных поверхностей при его подвижности не более 8 см. При бетонировании гражданских зданий с тонкими внутриквартирными стенами и перегородками по предложенной технологии достаточно двух - четырех пар лейнеров длиной от 1,2 до 1,6 м, обеспечивающих бетонирование стен протяженностью 150-200 м. Это позволит существенно снизить расход бетона по сравнению со зданиями, возводимыми по принятой технологии, и повысить экономическую эффективность их строительства.









2024 © sattarov.ru.